Publications
Peer-Reviewed Articles
Shankar S, Giraldo D, Tauxe GM, Spikol ED, Li M, Akbari OS, Wohl MP, McMeniman CJ. (2025) Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system. G3: Genes, Genomes, Genetics doi: 10.1093/g3journal/jkae307
*preprinted at bioRxiv: doi: https://doi.org/10.1101/2020.11.02.365916 365916v2
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski M, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. (2024) Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 227(1): iyae034.
* preprinted at bioRxiv: https://doi.org/10.1101/2023.06.28.546954
Giraldo D, Hammond AM, Wu J, Feole B, Al-Saloum N, McMeniman CJ. (2024) An expanded neurogenetic toolkit to decode Anopheles gambiae olfaction. Cell Reports Methods 4: 100714.
* preprinted at bioRxiv: https://doi.org/10.1101/2023.08.16.553590
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. (2023) Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep 13: 10154.
* preprinted at bioRxiv: https://doi.org/10.1101/2023.01.13.523989
Giraldo D, McMeniman CJ. (2023) A behavioral assay to quantify odor-guided thermotaxis with Anopheles gambiae under semi-field conditions. Cold Spring Harb Protoc doi: 10.1101/pdb.prot108303
Giraldo D, McMeniman CJ. (2023) Quantification of Anopheles gambiae olfactory preferences under semi-field conditions. Cold Spring Harb Protoc doi: 10.1101/pdb.prot108304
Giraldo D, Rankin-Turner S, Corver A, Tauxe GM, Gao AL, Jackson DM, Simubali L, Book C, Stevenson JC, Thuma PE, McCoy RC, Gordus A, Mburu MM, Simulundu E, McMeniman CJ. (2023) Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr Biol 33: 2367-2382.
* preprinted at bioRxiv: https://doi.org/10.1101/2022.12.25.521702.
Rankin-Turner S, McMeniman CJ. (2022) A headspace collection chamber for whole body volatilomics. Analyst 147: 5210-5222
* preprinted at ChemRXiv: https://doi.org/10.26434/chemrxiv-2022-rmf6x-v2
Wohl MP, McMeniman CJ. (2022) Batch rearing Aedes aegypti. Cold Spring Harb Protoc doi: 10.1101/pdb.prot108017
Wohl MP, McMeniman CJ. (2022) Single-pair and small-group crosses of Aedes aegypti. Cold Spring Harb Protoc doi: 10.1101/pdb.prot108018
Sun R, Li M, McMeniman CJ, Akbari OS. (2022) CRISPR-mediated genome engineering in Aedes aegypti. Methods Mol Biol 2509:23-51.
Shankar S, McMeniman CJ. (2020). An updated antennal lobe atlas for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 14(10):e0008729
* preprinted at bioRxiv: https://doi.org/10.1101/865675
Feng J, Shi W, Miklossy J, Tauxe GM, McMeniman CJ, Zhang Y. (2018) Identification of essential oils with strong activity against stationary phase Borrelia burgdorferi. Antibiotics 16: E89
Duvall LB, Basrur NS, Molina H, McMeniman CJ, Vosshall LB. (2017) A peptide signaling system that rapidly enforces paternity in the Aedes aegypti mosquito. Curr Biol 27: 3734-42
McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB. (2014) Multimodal integration of CO2 and other sensory cues drives mosquito attraction to humans. Cell 156: 1060-71
Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Popovici J, Rances E, Wee BA, Pavlides J, Sullivan MJ, Beatson SA, Lane A, Sidhu M, McMeniman CJ, McGraw EA, O'Neill SL. (2013) Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 5: 2189-204
Duplouy A, Iturbe-Ormaetxe I, Beatson SA, Szubert JM, Brownlie JC, McMeniman CJ, McGraw EA, Hurst GD, Charlat S, O'Neill SL, Woolfit M. (2013) Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics 14: 20
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA. (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450-3
McMeniman CJ, Hughes GL, O'Neill SL. (2011) A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Entomol 48: 76-84
McMeniman CJ, O'Neill SL. (2010) A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748
Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA. (2009) Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212: 1436-41
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141-4
McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O'Neill SL. (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74: 6963-9
McMeniman CJ, Barker SC. (2006) Transmission ratio distortion in the human body louse, Pediculus humanus (Insecta: Phthiraptera). Heredity 96: 63-8
Book Chapters
Giraldo D, McMeniman CJ. Quantifying mosquito host preference. (2023) Cold Spring Harb Protoc doi: 10.1101/pdb.top107663
Wohl MP, McMeniman CJ. (2022) Overview of Aedes aegypti and use in laboratory studies. Cold Spring Harb Protoc doi: 10.1101/pdb.top107651
McMeniman CJ. (2015) Disruption of mosquito olfaction. In: Genetic Control of Malaria and Dengue. Adelman ZN, editor. Elsevier, Waltham, MA, p. 227-252
Cook PE, McMeniman CJ, O'Neill SL. (2008) Modifying insect population age structure to control vector-borne disease. In: Transgenesis and the management of vector-borne disease. Landes Bioscience, Austin, TX, p. 126-140
Preprints in Process
Watch this space.